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1. Main text  

Privacy-preserving big data management and analytics (e.g., [7,8,9,26,27,28]) is a novel and extremely-emergent 
research area with plenty of real-life applications spanning from sensor network analysis to smart city tools, from 
social networks analysis to bio-informatics and bio-medical systems, from epidemic analysis and spread prediction 
tools (like those related to the recent COVID-19 pandemic – e.g., [10,11,12]) to graph analytics systems, and so forth. 

In all these application scenarios, the main goal consists in providing big data management and analytics services 
in a privacy-preserving manner, i.e. preserving the privacy of sensitive information (e.g., [13]), while still ensuring 
effectiveness and, moreover, efficiency. In this context, privacy-preserving OLAP (e.g., [14,15]) is a prominent 
research line, due to two main aspects: (i) OLAP tools are “premiere-class” big data analytics tools; (ii) structural 
nature of OLAP data cubes, i.e. array-based, lends itself “naturally” to elegant privacy-preserving solutions, as 
confirmed by recent, authoritative initiatives (e.g., [16,17]). 

In this so-delineated context, SPPOLAP [1] is a state-of-the-art privacy-preserving OLAP algorithm that 
introduces the two following main innovations: (i) a novel privacy OLAP notion; (ii) flexible adoption of sampling-
based techniques in order to achieve the final privacy-preserving data cube. As regards the first innovation, in fact, 
SPPOLAP overcomes classical privacy-preserving approaches (e.g., [16]) that adopt the vision of “seeing” OLAP 
data cubes as intrinsic multidimensional arrays, and try to compute the respective privacy-preserving multidimensional 
arrays. Contrary to this, SPPOLAP introduces the nice and elegant amenity of focusing on the privacy of OLAP 
aggregations, thus better exploiting the semantics of the powerful OLAP data cube model [18]. As regards the second 
innovation, too, SPPOLAP effectively and efficiently makes use of sampling-based techniques as follows. First, a 
suitable privacy grid is computed on top of the target OLAP data cube by considering a reference query workload on 
the cube. Then, an innovative privacy metrics that focuses on the privacy of OLAP aggregations is introduced, and 
the so-called privacy threshold is consequently defined, as capturing a lower bound for the deriving inference error. 
The latter measures how much OLAP queries issued to the privacy-preserving data cube are “wrong”, while still 
keeping an acceptable accuracy degree, so that they preserve the privacy of sensitive OLAP aggregations (i.e., limit 
the possibility of inferring further information from the knowledge already acquired). Finally, samples are extracted 
from the grid regions (determined by the reference privacy grid) as to satisfy the privacy threshold, according to a 
greedy strategy. By “possibly” satisfying the privacy threshold on all the grid regions, then the sampling-based 
privacy-preserving OLAP data cube is finally obtained. 

It should be note that, as regards the emerging big data management and analytics research area, SPPOLAP can 
really provide relevant opportunities. In fact, while the need for powerful big data analytics tools is clear (e.g., [19,20]), 
at the same, the privacy-preserving requirements are, nowadays, indispensable aspects to be considered in every real-
life system. Smart city application scenarios represent convincing case studies on this, where the privacy preservation 
axiom becomes a hard obstacle to smart citizen services for e-society, e-procurement, e-government, etc. 

With respect to [1] where the main SPPOLAP’s results are presented, this paper significantly extends [1] by means 
of the following contributions: 

 complete algorithms of the whole SPPOLAP algorithmic framework;  
 complexity analysis results; 
 comprehensive experimental analysis of SPPOLAP against real-life multidimensional data cubes, according to 

several experimental parameters. 

The remaining part of this paper is organized as follows. In Section 2, we provide a summary of the main 
SPPOLAP approach. Section 3 provides the complexity analysis and results of the SPPOLAP algorithm. In Section 
4, a comprehensive experimental analysis of SPPOLAP against real-life multidimensional data cubes, according to 
several experimental parameters is presented. Finally, Section 5 contains conclusions and future work of our research. 
Further, Appendix A reports all the algorithms of the complete SPPOLAP algorithmic framework. 
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2. SPPOLAP in a Nutshell  

In this Section, we provide a summary of the main SPPOLAP approach [1]. Given an OLAP data cube 𝐶𝐶, the goal 
of SPPOLAP algorithm is computing a synopsis privacy-preserving data cube 𝐶𝐶′. Here, we first provide basic 
definitions and metrics introduced by SPPOLAP, then we describe each step of SPPOLAP. Appendix A reports all 
the algorithms of the whole SPPOLAP algorithmic framework. 

2.1. Basic Definitions 

A data cube 𝐶𝐶 is defined as a tuple 𝐶𝐶 =< Δ, 𝐷𝐷, 𝑂𝑂, 𝐴𝐴 >, such that: (i) Δ  is the data domain of 𝐶𝐶, which contains data 
cells, i.e. the elementary aggregations of Δ  computed against the relational data source 𝑅𝑅 ; (ii)  𝐷𝐷  is the set of 
dimensions of 𝐶𝐶, which are the functional attributes with respect to which tuples in 𝑅𝑅 are aggregated; (iii) 𝑂𝑂 is the set 
of hierarchical representations of the functional attributes in 𝐷𝐷, shaped in form of trees and known as hierarchies; (iv) 
𝐴𝐴 is the set of measures of 𝐶𝐶, which are the set of attributes with respect to which SQL aggregations stored in data 
cells of 𝐶𝐶 are computed. Let 𝑢𝑢 ∈ 𝐷𝐷 be a generic dimension of 𝐶𝐶; we define |𝑢𝑢| as the cardinality of dimension 𝑢𝑢 and 
𝑂𝑂(𝑢𝑢) as the hierarchy of 𝑢𝑢. 

Let C be a D -dimensional data cube. Let m be an integer such that m  D . We define an m-dimensional range 
query G against C as a tuple G Il0 Il1 … Il(m-1) , such that (i) Ili is a contiguous range defined on the dimension uli 
of C, with 0  li  D , and (ii)  is a SQL aggregation operator (i.e., SUM, COUNT, AVG). When applied to C, G 
returns the -based aggregation over the data cells in C, contained in the multidimensional sub-domain of C and 
bounded by ranges Il0 Il1 … Il(m-1). In this work, we focus on range-SUM queries, as SUM aggregations are very 
popular in OLAP, and it also supports many different SQL aggregations, such as COUNT and AVG. 

We define also the region of a query G, H G , as the sub-domain of C bounded by ranges Il0 Il1 … Il(m-1). Given a 
data domain Δ, we define the volume of Δ as follows: 

 
||𝛥𝛥||  =  |𝑢𝑢0|  |𝑢𝑢1|  …  |𝑢𝑢|𝐷𝐷|−1| (1) 

 
The definition of volume can be extended also to a multidimensional data cube C, thus introducing the volume of 

C, denoted as C , and to a multidimensional range query G, thus introducing the volume of G, G , which in literature 
is also known as the selectivity of G. 

Given a D -dimensional data cube C, its privacy grid is defined as a tuple Z C r0 r1 … r D , such that rk is a 
range partitioning the dimension uk, with 0  k  D  in a rℓ-based partition. By combining the partitions along all 
dimensions u  D, we obtain Z C  as a regular partition of H C  (i.e., the multidimensional region associated to C) 
composed by the grid regions HZ C k rℓ0 k rℓ1 k … rℓ D k. Starting from this definition, we can define Z C  as a 
collection of grid regions, namely, Z C HZ C HZ C k … HZ C Z C - . 

2.2. Accuracy and Privacy Metrics 

We now describe metrics that we use for evaluating accuracy of answers to queries and privacy of multidimensional 
aggregates. We start from the definition of relative query error between exact and approximate answers, which is a 
well-recognized quality measure in literature (e.g., [2,3]). 

For a given query G, we denote as C G  the exact answer to G (more precisely, the answer to G evaluated on the 
data cube C) and as C’ G  the approximate answer to G (more precisely, the answer to G evaluated on the synopsis data 
cube C’). The relative query error is then defined as follows: 

 

𝐸𝐸𝐺𝐺 =  |𝐶𝐶(𝐺𝐺) − 𝐶𝐶′(𝐺𝐺)|
𝐶𝐶(𝐺𝐺)  

(2) 

 
Since our goal is to preserve privacy, we design metrics that consider how sensitive information can be discovered 

from aggregate data. Starting from knowledge about a given query G (i.e., volume and exact answer), it is possible to 
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infer knowledge about sensitive ranges of data contained in H G . For instance, it is possible to derive the average 
value of the contribution throughout which each elementary data cell contributes to C G . We name this quantity as 
singleton aggregation of G, denoted by V G . V G  is defined as follows: 

 

𝑉𝑉(𝐺𝐺) = 𝐶𝐶(𝐺𝐺)
||𝐺𝐺||  (3) 

 
Starting from V G , it is possible to progressively discover aggregations of larger ranges of data within H G . 

Indeed, by combining the knowledge about the synopsis data cube C’ and the knowledge about the query G, we can 
derive an estimation on V G , V’ G , defined as follows: 

 

𝑉𝑉′(𝐺𝐺) = 𝐶𝐶′(𝐺𝐺)
𝛴𝛴𝑁𝑁(𝐺𝐺) (4) 

such that ΣN G  is the number of samples extracted from H G  to compute C’. We then introduce the relative 
inference error EV G , which gives us a metric of the privacy of C’ G , defined as follows: 

 

𝐸𝐸𝑉𝑉(𝐺𝐺) =  |𝑉𝑉(𝐺𝐺) − 𝑉𝑉′(𝐺𝐺)|
𝑉𝑉(𝐺𝐺) (5)

 
We also introduce the definition of user-perceived singleton aggregation, denoted by V’P G , which is the singleton 

aggregation perceived by external application based on the knowledge made available to them. V’ G  is defined as 
follows: 

 

𝑉𝑉′
𝑃𝑃(𝐺𝐺) =  𝐶𝐶′(𝐺𝐺)

||𝐺𝐺||  (6) 

 
Then, we modify Equation (5) as to define the relative user-perceived inference error, as follows: 
 

𝐸𝐸𝑉𝑉
𝑃𝑃 =  |𝑉𝑉(𝐺𝐺) − 𝑉𝑉′

𝑃𝑃(𝐺𝐺)|
𝑉𝑉(𝐺𝐺)  (7) 

 

2.3. SPPOLAP Algorithm 

The input of SPPOLAP consists of: (i) the data cube 𝐶𝐶; (ii) the space constraint 𝐵𝐵; (iii) an integer parameter 𝑏𝑏 
(described in the following); (iv) the privacy threshold 𝑇𝑇; (v) the typical query-workload on 𝐶𝐶, defined as 𝐺𝐺𝑤𝑤. 

The first step of SPPOLAP consists in computing the privacy grid of the data cube C, Z C . To compute Z C , we 
need to calculate the range rℓk for each dimension u  D. We determine rℓk as an adequately-small fraction of the 
selectivity of queries in Gw. Let S be the typical query selectivity of Gw, computed by composing all the most frequent 
query ranges in Gw, and HZ C k  be the volume of HZ C k. If HZ C k  S, C’ can be computed by using the grid 
region as the elementary reasoning unit, and adopting a resolution level lower than the resolution level of queries 
against C. By doing so, it is possible to achieve an effective information gain during the computation of C’. If sampling 
of the grid region HZ C k is performed in a way that satisfies the privacy threshold T while ensuring the accuracy of 
approximate answers that involve region HZ C k, the same properties can also be inherited by the input queries on C, 
since the latter queries are defined on top of grid regions. 

The second step of SPPOLAP consists in obtaining the synopsis data cube C’. This is done by using a greedy 
strategy guided by the space constraint B. Due to the space constraint B, we must compute a “best-effort” synopsis 
data cube C’ such that: (i) it satisfies the privacy threshold T; (ii) it ensures accuracy of approximate answers; (iii) it 
fits within B. The greedy strategy works as follows: at each iteration j, it selects a grid region, denoted by HjZ C k, and 
extracts a set of samples, denoted by Σ HjZ C k . The greedy selection is performed until space constraint B is consumed. 

The greedy selection criterion considers the properties of data distributions associated to the grid regions in the 
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privacy grid Z C , more precisely, the skewness of data distributions associated to different grid regions. Let F HZ C k  
be the data distribution associated to grid region HZ C k. The main idea behind the selection criterion is based on the 
assumption that, in order to describe a grid region whose distribution is skewed (i.e., values of F HZ C k  are distributed 
according to a Zipf distribution, with asymmetric peaks), a number of samples higher than the number of samples 
required to describe a uniform grid region (i.e. a region where values of F HZ C k  are distributed around their average 
value) is required. We can safely assume that F HZ C k  are multidimensional, being the grid regions defined on top of 
multidimensional data cubes. 

In order to determine if a given data distribution is skewed, we adopt the result described in [4]. According to [4], 
a data distribution F is considered skewed if the skewness value of F, skew F , is greater than its standard deviation, 
 skew F , by a factor equal to 2.6, namely: skew F    s F . According to [5], skew F  can be computed 
as follows: 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹) = (𝜇𝜇3(𝐹𝐹))2

(𝜇𝜇2(𝐹𝐹))3 

 

(8) 

where μi F  denotes the i-th central moment. Based on the definitions in [4], we introduce the characteristic 
function φ F , which maps to 1 if F is skewed and to 0 if F is uniform. φ F  is defined as follows: 

 

𝜑𝜑(𝐹𝐹) = {1 𝑖𝑖𝑖𝑖 √𝑞𝑞∙(∑ (𝑘𝑘− 𝜇𝜇)3∙𝐹𝐹(𝑘𝑘)𝑞𝑞−1
𝑘𝑘=0 )

2

√6∙(∑ (𝑘𝑘− 𝜇𝜇)2∙𝐹𝐹(𝑘𝑘)𝑞𝑞−1
𝑘𝑘=0 )

3 > 2.6

0 𝑜𝑜𝑜𝑜ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
 

   (9) 

 
such that q and μ are, respectively, the number of data items and the mean value of the distribution F. 
Once the region HjZ C k is selected according to the aforementioned greedy criterion, samples must be extracted 

from it in order to obtain the set of samples Σ HjZ C k . This operation is the baseline for computing the synopsis data 
cube C’. We employ a strategy called uniform sampling, i.e. based on the conventional Uniform distribution. Uniform 
sampling works as follows: let Δmin Δmax  with Δmax Δmin, be the interval where the data domain Δ is defined (we 
assume that Δ is one-dimensional). The i-th sample is extracted by first sampling a random indexer n using a Uniform 
distribution defined in Δmin Δmax  and then returning the value Δ n , if it has not been already selected in a previous 
iteration. This procedure can be easily generalized to a multidimensional data domain by iterating the same procedure 
over all dimensions u  D.  

Given the grid region HjZ C k at the iteration j of SPPOLAP, we first consider the corresponding range-SUM query 
GjZ C k whose range is equal to the range of HjZ C k. Then, we use the input parameter b, with b 0, for iteratively 
sampling region HjZ C k. More precisely, we sample b-sized sub-sets of samples from HjZ C k until (i) the privacy 
constraint on HjZ C k is satisfied (i.e., EVP GjZ C k ≥ T) or (ii) B is consumed.  
According to our design of SPPOLAP, b can be seen as a buffer size, used during the sampling phase. This solution 
allows avoiding computational overheads that would appear by performing sampling on massive in-size data cubes. 
Our sampling method considers the nature of OLAP queries and the privacy requirements. More precisely, we apply 
Uniform sampling on a subset UjZ C k of data cells in HjZ C k whose value is higher than the average value of HjZ C k. 
This particular strategy allows us to obtain an approximate answer to GjZ C k having a good degree of approximation 
and, at the same time, a high degree of privacy, as it allows to satisfy the constraint EVP GjZ C k ≥ T. These properties 
are in turn inherited by input queries on C, as above described. 

3. SPPOLAP: Complexity Analysis and Results 

In this Section, we provide the complexity analysis and results of the SPPOLAP algorithm. 
First, consider that the SPPOLAP approach is inspired by the well-known research area of OLAP data cube 

compression algorithms (e.g., [25]). In this context, given an OLAP data cube C with D  dimensions, the complexity 
of any arbitrary data cube compression algorithm Pc due to computing the compressed version of C, said CP, denoted 
by OPc(n), is already known to being exponential in the number of dimensions D , i.e: 
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𝑂𝑂𝑃𝑃𝑐𝑐(𝑛𝑛) = 𝑒𝑒|𝐷𝐷| (10) 

 
Obliviously, the exponential nature of the algorithm cannot be avoided, but suitable lower-costly computations of 

SPPOLAP can be achieved in most executions. The latter is another hidden goal of the SPPOLAP algorithm. Let 
Gw  be the cardinality of the input query workload Gw, and Z(C)  the cardinality of the privacy grid Z(C) built on top 

of C (see Section 2). The complexity of SPPOLAP algorithm due to computing the privacy-preserving version of C, 
C’, denoted by OSPPOLAP(n), is given by: 

 
𝑂𝑂𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃(𝑛𝑛) = |𝐺𝐺𝑤𝑤|𝑒𝑒|𝑍𝑍(𝐶𝐶)| (11) 

  
Since, due to the SPPOLAP construction method (see Section 2), the following relation holds: 
 

|𝑍𝑍(𝐶𝐶)| ≪ |𝐷𝐷| 
 

(12) 

then, the following relation holds: 
 

𝑂𝑂𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃(𝑛𝑛) ≪ 𝑂𝑂𝑃𝑃𝑐𝑐(𝑛𝑛) 
 

(13) 

Hence, we can conclude that, given an OLAP data cube C, the complexity of SPPOLAP algorithm due to 
computing the privacy-preserving version of C, C’, is, for most executions, significantly bounded by the exponential 
computational complexity with respect to the number of dimensions of C, D . 

The latter is a significant theoretical result that is further corroborated by the experimental analysis provided in 
Section 4 (specifically, Section 4.3, where we experimentally assess the performance of SPPOLAP). 

4. SPPOLAP: Experimental Assessment and Evaluation 

In this Section, we provide an experimental assessment of SPPOLAP using real-life data cubes. We consider 
several perspectives of analysis, aiming at testing quality, effectiveness and sensitivity of our proposed technique. 
SPPOLAP performance is compared with Zero-Sum algorithm described in [6]. 

We focus on two-dimensional data cubes, which well covers the goals of a reliable experimental evaluation of 
privacy preservation capabilities. Indeed, we also tested our method on more probing multidimensional data cubes, 
obtaining results very similar to those experienced on two-dimensional data cubes. For this reason, here we present 
only the results on two-dimensional data cubes. 

The parameters used in our evaluations are the following: (i) the cardinality of each dimension of the data cube, 
denoted by L0 and L1; (ii) the range sizes of grid regions of the privacy grid, K0 and K1; (iii) the sparseness coefficient 
s, which measures the ratio of non-null data cells with respect to the total number of data cells; (iv) the space constraint 
B; (v) the privacy threshold T; (vi) C, which models the type of data cube we are using for our evaluation; (vii) the 
query selectivity S. In addition, we introduce ad-hoc metrics for each perspective of analysis that is object of our 
experimental assessment. 

In the quality analysis, we employ the privacy and accuracy factors defined by Sung et al. [6], respectively FP and 
FA. We define both of them in the following. 

Let C and C’ be, respectively, the input data cube and the synopsis data cube. Let ω k  be a data cube cell having k 
as multidimensional indexer, with ω C C’ , the privacy factor FP measures the average amount of distorted cells 
contained in blocks of C’. In the Zero-Sum method, the block is a sub-cube with respect to which marginal sums of 
perturbed data cells along rows and columns are maintained equal to zero. FP is defined as follows: 

 

𝐹𝐹𝑃𝑃(𝐶𝐶, 𝐶𝐶′) = 1
||𝐶𝐶|| ∙ ∑

|𝐶𝐶′{𝑘𝑘} − 𝐶𝐶{𝑘𝑘}|
|𝐶𝐶{𝑘𝑘}|

‖𝐶𝐶‖−1

𝑘𝑘=0
 

 

(14) 

Basically, FP is a way to measure how much good the privacy preservation of C’ is. Since Zero-Sum is a method 
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only the results on two-dimensional data cubes. 

The parameters used in our evaluations are the following: (i) the cardinality of each dimension of the data cube, 
denoted by L0 and L1; (ii) the range sizes of grid regions of the privacy grid, K0 and K1; (iii) the sparseness coefficient 
s, which measures the ratio of non-null data cells with respect to the total number of data cells; (iv) the space constraint 
B; (v) the privacy threshold T; (vi) C, which models the type of data cube we are using for our evaluation; (vii) the 
query selectivity S. In addition, we introduce ad-hoc metrics for each perspective of analysis that is object of our 
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In the quality analysis, we employ the privacy and accuracy factors defined by Sung et al. [6], respectively FP and 
FA. We define both of them in the following. 

Let C and C’ be, respectively, the input data cube and the synopsis data cube. Let ω k  be a data cube cell having k 
as multidimensional indexer, with ω C C’ , the privacy factor FP measures the average amount of distorted cells 
contained in blocks of C’. In the Zero-Sum method, the block is a sub-cube with respect to which marginal sums of 
perturbed data cells along rows and columns are maintained equal to zero. FP is defined as follows: 

 

𝐹𝐹𝑃𝑃(𝐶𝐶, 𝐶𝐶′) = 1
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|𝐶𝐶′{𝑘𝑘} − 𝐶𝐶{𝑘𝑘}|
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(14) 

Basically, FP is a way to measure how much good the privacy preservation of C’ is. Since Zero-Sum is a method 
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oriented to data cells and our technique is based on the privacy OLAP notion, we will adapt the definition of FP to 
better fit our problem. First, we replace the concept of block, underlying the definition of Equation (14), with the 
concept of grid region (indeed, they are very similar). Second, in case C’ k NULL (i.e., when C’ k  has not yet been 
sampled), we replace C’ k  with the corresponding singleton aggregation computed with respect to the grid region 
containing C’ k . 

Concerning accuracy factor FA, it is instead defined in dependence of a query G on the synopsis data cube C’, as 
follows: 

 

𝐹𝐹𝐴𝐴(𝐺𝐺) = 2−|𝐶𝐶(𝐺𝐺)−𝐶𝐶′(𝐺𝐺)|
|𝐶𝐶(𝐺𝐺)|  

 
(15) 

such that C G  is the exact answer to G and C’ G  is the approximate answer to G. Basically, FA is a measure of how 
much good the degree of approximation ensured by C’ for a given query G is. We extend the definition of Equation 
(15) to an input query workload Gw, as follows: 

 

𝐹𝐹𝐴𝐴(𝐺𝐺𝑤𝑤) = 1
|𝐺𝐺𝑤𝑤| ∑ 𝐹𝐹𝐴𝐴(𝐺𝐺𝑘𝑘)

|𝐺𝐺𝑤𝑤|

𝑘𝑘=0
 (16) 

 
For the purpose of the quality analysis, Gw is set as composed by the collection of range-SUM queries corresponding 

to blocks for the case of the Zero-Sum method, and to grid regions for SPPOLAP. 
In the effectiveness analysis, we use the average relative user-perceived inference error, generalized from Equation 

(7) on the typical query workload Gw, as follows: 
 

𝐸𝐸𝑉𝑉
𝑃𝑃′(𝐺𝐺𝑤𝑤) =  1

|𝐺𝐺𝑤𝑤| ∑ 𝐸𝐸𝑉𝑉
𝑃𝑃(𝐺𝐺𝑘𝑘)

|𝐺𝐺𝑤𝑤|

𝑘𝑘=0
 (17) 

 
In our experimental framework, queries in Gw are synthetically generated as those queries that completely “span” 

the target data cube and having selectivity S fixed to a percentage of the volume of the data cube. 
For our experimental evaluation, we select two-dimensional data cubes coming from three well-known datasets: 

APB, TPC-H and UsCensus. Fig. 1 shows the DFM [21] of the two-dimensional data cube built from APB. Fig. 2 
and Fig 3 show the same for the case of TPC-H and UsCensus, respectively. 

 
 

 

Fig. 1. Two-Dimensional APB Data Cube used in our Experimental Evaluation. 

 

 

Fig. 2. Two-Dimensional TPC-H Data Cube used in our Experimental Evaluation. 

 

 

Fig. 3. Two-Dimensional UsCensus Data Cube used in our Experimental Evaluation. 
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4.1. Quality Analysis 

In this Section, we describe the results of quality analysis of SPPOLAP on APB, TPC-H and UsCensus data 
cubes. Quality analysis is first performed with respect to the sparseness coefficient s. The metrics that we use are the 
above-described accuracy and privacy factors FP and FA, defined in Equation (14) and Equation (16), respectively. 

Fig. 4 shows results of quality analysis with respect to the sparseness coefficient s against the target data cubes, 
with the following settings of experimental parameters: Kk = 10%, Lk = 10%, T = 70%, B = 20%, b = 20%, S = 10%. 
More precisely, Fig. 4 (a), Fig. 4 (b) and Fig. 4 (c) show the accuracy factor trend of SPPOLAP against the APB, 
TPC-H and UsCensus data cubes, respectively, in comparison with the results given by Zero-Sum, while Fig. 4 (d), 
Fig. 4 (e) and Fig. 4 (f) show the privacy factor trend of SPPOLAP against the APB, TPC-H and UsCensus data 
cubes, respectively, still in comparison with Zero-Sum. 
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Fig. 4. Quality Analysis on Two-Dimensional Data Cubes w.r.t. Sparseness Coefficient s. 

Fig. 5 shows results of quality analysis with respect to the space bound B against the target data cubes, with the 
following settings of experimental parameters: Kk = 10%, Lk = 10%, T = 70%, b = 20%, s = 20%, S = 10%. In more 
details, Fig. 5 (a), Fig. 5 (b) and Fig. 5 (c) show the accuracy factor trend of SPPOLAP against the APB, TPC-H and 
UsCensus data cubes, respectively, in comparison with the results given by Zero-Sum, while Fig. 5 (d), Fig. 5 (e) 
and Fig. 5 (f) show the privacy factor trend of SPPOLAP against the APB, TPC-H and UsCensus data cubes, 
respectively, still in comparison with Zero-Sum. 
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Fig. 5. Quality Analysis on Two-Dimensional Data Cubes w.r.t. Space Bound B. 

Fig. 6 shows results of quality analysis with respect to the sampling percentage sp, which is defined as the number 
of sampled cells with respect to the total number of cells in the input data cube. In this analysis, the following setting 
of experimental parameters is used: Kk = 10%, Lk = 10%, T = 70%, B = 20%, s = 20%, b = 20%, S = 10%. In more 
details, Fig. 6 (a), Fig. 6 (b) and Fig. 6 (c) show the accuracy factor trend of SPPOLAP against the APB, TPC-H and 
UsCensus data cubes, respectively, while Fig. 6 (d), Fig. 6 (e) and Fig. 6 (f) show the privacy factor trend of 
SPPOLAP against the APB, TPC-H and UsCensus data cubes, respectively. 

4.2. Effectiveness Analysis 

In this Section, we describe the results of effectiveness analysis of SPPOLAP on APB, TPC-H and UsCensus 
data cubes. The metrics that we use is the average relative privacy error reported in Equation (17). 
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Fig. 6. Quality Analysis on Two-Dimensional Data Cubes w.r.t. Sampling Percentage sp. 

Fig. 7 shows results of effectiveness analysis with respect to the selectivity S against the target data cubes, with the 
following settings of experimental parameters: Kk = 10%, Lk = 10%, T = 70%, B = 20%, b = 20%, s = 20%. More 
precisely, Fig. 7 (a), Fig. 7 (b) and Fig. 7 (c) show the effectiveness trend of SPPOLAP against the APB, TPC-H 
and UsCensus data cubes, respectively, in comparison with the results given by Zero-Sum. 

Fig. 8 shows results of effectiveness analysis with respect to the space bound B against the target data cubes, with 
the following settings of experimental parameters: Kk = 10%, Lk = 10%, T = 70%, b = 20%, s = 20%, S = 10%. More 
precisely, Fig. 8 (a), Fig. 8 (b) and Fig. 8 (c) show the effectiveness trend of SPPOLAP against the APB, TPC-H 
and UsCensus data cubes, respectively, in comparison with the results given by Zero-Sum. 
 

4.3. Performance Analysis 

In this Section, we evaluate the performance of SPPOLAP in comparison with Zero-Sum approach. Performance 
is modeled in terms of sampling time in seconds. We evaluate performance with respect to buffer size b, due to the 
fact that, as described in Section 2.3, the use of a buffer size allows us to avoid excessive computation overhead that 
would be caused by performing sampling on massive in-size data cubes without buffering. 
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Fig. 7. Effectiveness Analysis on Two-Dimensional Data Cubes w.r.t. Query Selectivity S. 
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Fig. 8. Effectiveness Analysis on Two-Dimensional Data Cubes w.r.t. Space Bound B. 

Results of the performance analysis are shown in Fig. 9. In this analysis, the following setting of experimental 
parameters is superimposed: Kk = 10%, Lk = 10%, T = 70%, B = 20%, s = 20%; S = 10%. Fig. 9 (a), Fig. 9 (b) and Fig. 
9 (c) show the sampling time for APB, TPC-H and UsCensus data cubes, respectively, in comparison with the Zero-
Sum approach. 

5. Conclusions and Future Work 

Starting from the extremely-emerging context of privacy-preserving big data management and analytics, this paper 
has further extended the research contributions initially provided by the state-of-the-art SPPOLAP algorithm [1] for 
supporting privacy-preserving OLAP. The novel contributions are focused on complete algorithms of the whole 
SPPOLAP algorithmic framework, complexity analysis and results, and comprehensive experimental analysis of 
SPPOLAP against real-life multidimensional data cubes, according to several experimental parameters. Particularly, 
the experimental results have confirmed the suitability of SPPOLAP in a wide range of emerging big data 
applications, such as smart city application scenarios, where the privacy preservation axiom becomes a hard obstacle 
to smart citizen services for e-society, e-procurement, e-government, etc. Future work is mainly oriented towards the 
extension of the actual framework to other big data management and analytics paradigms (e.g., [22,23,24]). 
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Fig. 9. Effectiveness Analysis on Two-Dimensional Data Cubes w.r.t. Buffer Size b 
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